Received: April 5, 1983; accepted: September 8, 1983

STUDIES IN FLUORINATED 1,3-DIKETONES AND RELATED COMPOUNDS PART XV^a. SYNTHESIS AND SPECTROSCOPIC STUDIES OF SOME NEW FLUORINATED MONOTHIO-1,3-DIKETONES

KRISHNA C. JOSHI, VIJAI N. PATHAK

Department of Chemistry, University of Rajasthan, Jaipur - 302004 (India)

VINEETA GROVER

Department of Chemistry, Malaviya Regional Engineering College, Jaipur - 302004 (India)

SUMMARY

Six new polyfluorinated monothio-1,3-diketones have been synthesized from the corresponding fluorinated aceto-phenones and appropriate 0-alkyl thioesters in the presence of sodamide. All these monothio-1,3-diketones are characterized by I.R. and ¹H N.M.R. spectral studies.

INTRODUCTION

The chemistry of fluorinated 1,3-diketones and related monothio-1,3-diketones is well recognised. Monothio-1,3-diketones like monothioacetylacetone and thiothenoyltrifluoro-acetone have received considerable attention in analytical

Abstract: Xth International Symposium on Fluorine Chemistry, Vancouver, Canada, 1982 [J. Fluorine Chem., 21 (1982) 65.]

a Part XIV. K.C. Joshi, V.N. Pathak and V. Grover, J. Ind. Chem. Soc., LIX (1982) 1072.

chemistry as superior chelating agents [1]. These are particularly useful in solvent extraction of trace metals and it has been noticed that the volatility of metal chelates increases with the degree of fluorination of the ligand [2] and on replacing oxygen with sulphur [3]. In continuation of our comprehensive programme of developing new fluorinated 1,3-diketones, monothio-1,3-diketones and related compounds [4-8], we now report the synthesis and characterisation of some new fluorinated monothio-1,3-diketones.

<u>Viz</u>: 4-(3,4-Difluorophenyl)butan-4-one-2-thione; 3-(3,4-Difluorophenyl)-1-phenylpropan-1-one-3-thione; 4-(2,4,6-Trifluorophenyl)butan-4-one-2-thione; 3-(2,4,6-Trifluorophenyl)-1-phenyl-propan-1-one-3-thione; 4-(2,3,4,5,6-Pentafluorophenyl)butan-4-one-2-thione; 3-(2,3,4,5,6-Pentafluorophenyl)-1-phenylpropan-1-one-3-thione,

The monothio-1,3-diketones could exist in any of the forms:

The i.r. spectra of our fluorinated monothio-1,3-diketones show weak bands in the region $3655-3540~\rm cm^{-1}$ which are attributed to intermolecularly hydrogen-bonded 0-H stretching vibrations. Bands which are present in the region $2700-2100~\rm cm^{-1}$ are designated to chelated enol groups (C=S....H-0-C=). C-0 and C-C stretching vibrations are observed in the regions $1630-1595~\rm cm^{-1}$ and $1565-1550~\rm cm^{-1}$. The absence of absorption bands in the region $1725-1700~\rm cm^{-1}$ indicates that these compounds exist entirely in the hydrogen-bonded enol form. A very strong band due to overlapping of C-S and C-F stretching absorptions is observed in the region $1265-1220~\rm cm^{-1}$. In addition, very strong bands due to C-F stretching vibrations are observed in the region $1180-1011~\rm cm^{-1}$. The n.m.r. data support the above observations. The compounds show =CH signals in the region $6.8-7.4~\rm ppm$ and

=C-O-H...S=C- signals in the & 13-15.8 ppm region. The absence of methylene signals (in the & 3.0-3.2 ppm) and non-appearance of enethiol (=C-S-H) proton signals in the region & 4.8-6.8 ppm are strong evidence for the absence of form (C).

TABLE 1

Analytical and characteristic data of fluorinated monothio1,3-diketones, ArCOCH₂CSR

S1 No.	Subst. in Ar	R	Dist. Temp. C/P	Mol. Formula	Calc.	Calc.	Calc.	
1	3,4-DiF	СНЗ	130/ 1mm.	C H F OS 10 B 2	56.07 (56.01)	3.74 (3.72)	17.76 (17.72)	14.95 (14.89)
2	3,4-DiF	^C 6 ^H 5	160/ 2mm.	^C 15 ^H 10 ^F 2 ^C	05 65.22 (65.20)	3.62 (3.58)	13.77 (13.70)	11.59 (11.55)
3	2,4,6- Tri F	^{CH} 3	120/ 1mm.	c ₁₀ H ₇ F ₃ 0S	51.72 (51.68)	3.02 (3.00)	24.57 (24.52)	13.79 (13.78)
4	2,4,6- Tri F	^C 6 ^H 5	140/ 2mm.	C ₁₅ H ₉ F ₃ OS	61.22 (61.17)	3.06 (3.00)	19.39 (19.38)	10.88 (10.87)
5	2,3,4, 5,6- Penta F	CH ₃	100/ 0.5 mm.	C ₁₀ H ₅ F ₅ OS	44.78 (44.75)	1.87 (1.82)	35.45 (35.40)	11.94 (11.93)
6	2,3,4, 5,6- Penta F	^C 6 ^H 5	110/ 0.5 mm.	^C 15 ^H 7 ^F 5 ^{OS}	54.54 (54.54)	-	28.79 (28.75)	-

In the 1 H n.m.r. spectra, the enolic proton (0-H...S) signals are sharp and at low field (δ 13-15.8 ppm) indicating strong intramolecular and weak intermolecular hydrogen bonding.

EXPERIMENTAL

I.r. spectra were recorded on a Perkin-Elmer 337 spectrometer in Nujol mull; ¹H n.m.r. spectra by a Perkin-Elmer RB-12 spectrometer in COCl₃ solution with TMS as an internal standard.

Synthesis of fluorinated acetophenones

3,4-Difluoro- and 2,4,6-trifluoro-acetophenones were prepared according to the method of Joshi et al. [4].

Synthesis of O-ethyl thioesters

The thioesters R(CS)OEt were prepared from corresponding imidic esters by the action of hydrogen sulphide [7].

Synthesis of monothio-1,3-diketones

These were prepared by the method reported by us earlier [7] by the Claisen condensation. All the fluorinated monothio-1,3-diketones gave single spots on t.l.c., and are recorded along with their analytical data in Table $\acute{1}$.

REFERENCES

- 1 T. Honjo and T. Kiba, Bull. Chem. Soc. Japan, 45 (1972)
- 2 M.R. Richardson and R.E. Sievers, Inorg. Chem. 10 (1971) 498.
- 3 E. Baeyer, H.P. Muller and R.E. Sievers, Anal. Chem. 43 (1971) 2012.
- 4 K.C. Joshi, V.N. Pathak and V. Grover, J. Fluorine Chem. 15 (1980) 245.
- 5 K.C. Joshi, V.N. Pathak and V. Grover, J. Fluorine Chem. 15 (1980) 527.
- 6 K.C. Joshi, V.N. Pathak and V. Grover, J. Fluorine Chem. 17 (1981) 555.
- 7 K.C. Joshi, V.N. Pathak and K. Kumavat, J. Chem. Soc., (1977) 1127.
- 8 K.C. Joshi, V.N. Pathak and V. Grover, J. Fluorine Chem., 13 (1979) 261.